Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(10): e0293181, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37871022

RESUMO

Plum Rains Season (PRS) has the typical characteristics of outdoor air temperature dramatic changes and high air humidity in the hot summer and cold winter region in China. When the outdoor temperature rises rapidly during PRS, the building envelope surface temperature is probably lower than the indoor air dew point temperature, resulting in moisture condensation. This paper evaluates the influence of geographical location and outdoor meteorological parameters on the indoor humidity environment. The effects of critical parameters such as altitude, average temperature, relative humidity, total precipitation, total precipitation days, atmospheric pressure, and wind speed on the building envelope moisture condensation in nine typical cities in the hot summer and cold winter region were simulated and analyzed. The results show that the Condensation Frequency (CFn) in the western, central, and eastern regions reached the highest in April, May, and June, respectively. Among the nine typical cities, Changsha has the highest Condensation Risk (CR). In addition, the altitude, total precipitation, and atmospheric pressure have little effect on the indoor humidity environment, and it is not directly related to CR; The average temperature and total precipitation days were not related to CR in the western and eastern regions and positively correlated with CR in the central region; The wind speed was positively correlated with CR in the western and central regions and negatively correlated in the eastern region; The relative humidity can affect the indoor humidity environment and moisture condensation on the inner surface of walls, when the relative humidity increases, the CR increases.


Assuntos
Poluentes Atmosféricos , Prunus domestica , Estações do Ano , Poluentes Atmosféricos/análise , Umidade , Temperatura , China , Chuva
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...